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A collaborative software development approach is described. The software
product is an adaptation of proven computational capabilities combined with new ca-
pabilities to form the Agency’s next generation aerothermodynamic and aerodynamic
analysis and design tools. To efficiently produce a cohesive, robust, and extensible
software suite, the approach uses agile software development techniques; specifically,
project retrospectives, the Scrum status meeting format, and a subset of Extreme
Programming’s coding practices are employed. Examples are provided which demon-
strate the substantial benefits derived from employing these practices. Also included
is a discussion of issues encountered when porting legacy Fortran 77 code to For-
tran 95 and a Fortran 95 coding standard.

Introduction
The objective of the Fast Adaptive AeroSpace

Tools (FAAST) program at NASA Langley Research
Center is to develop the next generation of aerospace
analysis and design tools.1 The four primary ele-
ments in this effort are CAD-to-Grid Methods, High
Energy Flow Solver Synthesis (HEFSS), Optimally
Convergent Algorithms, and Efficient Adjoint De-
sign Methods. This paper primarily focuses on
the software development practices adopted by the
HEFSS and design elements of FAAST.

Over the past two decades, Langley’s Aerother-
modynamics Branch has provided extensive compu-
tational support for NASA’s space program. Con-
tributions have included aerodynamic and aerother-
modynamic predictions across the hypersonic regime
for planetary missions such as Mars Pathfinder and
access to space projects such as X-33, X-34, and
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X-37. The primary tool used to provide these data
has been the Laura solver,2 developed by Gnoffo.
In addition to external hypersonic flows, Lang-
ley’s Hypersonic Airbreathing Propulsion Branch
has made significant contributions to NASA’s hyper-
sonic propulsion projects with the Vulcan solver,3

developed by White. Together, these two packages
represent the state of the art at Langley in high-
energy, reacting-gas chemistry computational tools.

While success has been achieved using the struc-
tured grid tools Laura and Vulcan, there are
inherent topology limitations on geometric config-
urations for which structured-grid discrete domains
can be efficiently produced. Alternatively, the field
of unstructured-grid methods has matured rapidly in
recent years. With this approach, a wide range of ge-
ometric configurations can be efficiently modeled for
analysis. Langley tools such as Fun2D/3D4,5 and
Usm3D6 have been validated with experimental data
and with their structured-grid counterparts for a
wide array of perfect-gas Reynolds-averaged Navier
Stokes applications, ranging from incompressible to
transonic and supersonic flows.

The goal of the HEFSS project is to com-
bine the capabilities and strengths of the reacting-
gas physical models in Laura and Vulcan and
the unstructured-grid discretizations of codes like
Fun3D and Usm3D to produce the next-generation
computational tool for analysis and design, while
employing software development techniques that en-
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able a robust, extensible, and portable final prod-
uct. This software development effort is similar to
ONERA’s elsA project.7

The development of computational fluid dynamic
(CFD) application codesa at Langley and at the for-
mer, co-located Institute for Computer Applications
in Science and Engineering (ICASE) has consisted of
one or two people working sharply focused applica-
tions or algorithms. Even if more people contribute
to the development of a code, there is typically only
one person who contributes the bulk of the code
and serves as gatekeeper for any changes. Mani-
festations of this paradigm are shown in Table 1. In
all these examples, the code architect will cite oth-
ers who have made important contributions to the
code; nevertheless, they are typically managed like
a cottage industry.

In cases where the high-level application is identi-
cal, algorithm details may differ because of code ro-
bustness considerations for specialized applications
or because new algorithms must eventually evolve
to “application” status. Such evolution has often
been easier to accommodate by extending the ini-
tial, simple test versions of the algorithm rather
than by integrating them into an existing application
code. However, over the last decade, both the field
of CFD and computational capability have largely
outstripped the ability of a single developer to make
a significant contribution. The scope and complexity
of a modern application now require several experts
to work collaboratively.

Software engineering processes which accommo-
date teams of tens of hundreds of programmers
working with a relatively well-defined set of require-
ments (e.g., a satellite tracking system) were con-
sidered,b but it was found that they are simply
not appropriate for a small, research environment.
On the contrary, the emerging agile software devel-
opment movementc is well suited to the uncertain
requirements and small teams typically present in
a research environment. The agile movement views
software development as an empirical process rather
than the defined process which software engineer-
ing attempts to govern.8 To manage the empiri-
cal process, agile methods incorporate rapid feed-
back mechanisms to enable constant steering and
place a renewed emphasis on the heart of software
development—software craftsmanship.9

aAn “application” code is defined as one which can com-
pute aerodynamics and/or aerothermodynamics of three-
dimensional flows, including appropriate physical models and
boundary conditions for geometrically complex configura-
tions.

bSee www.sei.cmu.edu/cmm/ for example.
cSee www.agilealliance.org.

Regardless of the software development process
chosen, making the switch from a one-code, one-
developer paradigm to a team-based approach is a
large culture change under any circumstances. How-
ever, the ambitious goals of the HEFSS project pro-
vided a strong motivation to look past skepticism
and overcome resistance to change since it required
a group of developers (initially 12 people ranging
between 25 to 100 percent work-level), with diverse
areas of expertise, to collaborate on a single piece
of software. Within the 18 months of the project,
HEFSS had promised to demonstrate successful syn-
thesis of the structured-grid physical models on a
cylinder case using an unstructured discretization.
In addition, an existing unstructured-grid code was
to be selected to serve as the baseline for the HEFSS
effort, and its functionality was to be maintained
within the HEFSS code base. To compound mat-
ters, there were no software development experts
available to serve on the team. This critical gap was
filled by consultant-led workshops, a visiting lecturer
series, a support contractor, and the good fortune
of having two team members with CFD expertise
aggressively pursue software development best prac-
tices appropriate for our team.10,11

The purpose of this paper is to document how
the HEFSS team adapted and incorporated agile
software development practices to develop the next
generation CFD application software. No claims are
made that the correct process decisions were made or
that the current processes have fully matured. And
since there is no control team with identical talents
and objectives, it is difficult to objectively gauge the
performance of the HEFSS team other than to ob-
serve that the project is ongoing, morale is high, its
practices have been adopted by other teams, it was
included in a group achievement award, and the lo-
cal software engineering process group is using it as
a model. The experience and lessons learned are
humbly offered as a case study, which may be useful
to others with similar background and goals.

The first several sections outline the baseline code
selection process, justify the programming language
chosen, and outline how the legacy code base was
ported and restructured to take advantage of the
new language features. Following this background
material, modularity and data encapsulation design
issues are presented as well as details about how the
high-energy physics modules were incorporated into
the baseline solver. Next, the software development
section documents the practices that allow a team
software development environment to thrive. This
discussion is followed by a section highlighting sev-
eral experience reports of research products created
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Table 1 CFD code, architect, and application domain.

Cfl3D Rumsey/Biedron Structured-grid (SG) aerodynamics

Laura Gnoffo SG hypersonic aerothermodynamics

Vulcan White SG hypersonic propulsion

Tlns3D Vatsa SG aerodynamics

Overflow Buning Overset SG aerodynamics

Usm3D Frink Unstructured-grid (UG) aerodynamics

Nsu3D Mavriplis UG aerodynamics

Fun3D Anderson UG aerodynamics and design

Felisa Peraire UG hypersonic aerodynamics

in this environment and finally, some concluding re-
marks.

Baseline Code Selection
Three Langley unstructured codes, Usm3D,

Fun3D, and Felisa,12 were considered as the initial
template for the Hefss code. Felisa, an inviscid,
unstructured flow solver, already has considerable
success in the hypersonic domain. It also has equilib-
rium and thermochemical nonequilibrium gas mod-
els. While the addition of thermochemical nonequi-
librium source terms, thermodynamic models, and
transport models was perceived to be straightfor-
ward, considerable effort would have been required
to introduce the viscous terms, the viscous flux Ja-
cobians, and an implicit solution scheme. Both
Usm3D and Fun3D are highly successful codes for
computing viscous flow on unstructured grids within
the subsonic to low supersonic speed regimes. Ul-
timately, Fun3D was selected because it is more
robust in the hypersonic domain, which is appar-
ently attributable to its combination of Roe Flux
Difference Splitting, flux reconstruction, and asso-
ciated limiters. In addition, its discretizations are
similar to Laura, and the discrete adjoint capabil-
ity for perfect gas design13,14,15 and grid adapta-
tion16,17,18,19,20,21 was judged particularly appeal-
ing for future hypersonic design and grid adaptation.
A successful retrofitting of Fun2D with thermo-
chemical nonequilibrium models confirmed the vi-
ability of this approach.

Programming Language
Most of the CFD codes developed at Langley

are written in Fortran 77 and often rely on non-
portable extensions such as vendor-specific functions
or links with C code. For the current project, the
team sought a single, unifying standard language un-
der which to develop new code. After surveying the
available programming languages and deciding that
a mixed-language code base would increase complex-
ity too much, Fortran 95 was selected for the new
suite of codes. Fortran 95 promises the numerical

performance of Fortran 77 with the advanced fea-
tures of other languages, such as dynamic memory
allocation, derived types, recursion, and modules.
This choice also allows a relatively straightforward
conversion of a substantial legacy code base written
in Fortran 77.

The selection of Fortran 95 was tempered by the
commitment to deliver a hypersonic flow simulation
with thermochemical nonequilibrium on a geometri-
cally simple configuration within 18 months. Adop-
tion of a programming language significantly differ-
ent from Fortran would have required a learning
period for the majority of the team members, who
were already proficient with Fortran 77. The time
required to bring team members up to speed in a new
language, plus the time required for conversion of
legacy Fortran 77 to a language outside the For-

tran family, was judged too costly, relative to the
potential benefit offered by any other language.

Fortran 95 training was tailored to team needs
in a two-part workshop. Dan Nagle, from Purple
Sage Computing Solutions,d spent a day with the
team learning the Hefss code objectives and the
architecture of the legacy code. Using this mate-
rial, he prepared a two-day course which highlighted
Fortran 95 features suited to the HEFSS project.

Auxiliary scripting for controlling code compi-
lation, templating, and testing is performed with
Ruby22,23 and Make.e Ruby is an open source,
object-oriented, threaded-scripting language with
cross-platform support, while Make is an open
source compilation tool.

Porting and Restructuring
Legacy Code

To lay a solid foundation for the new suite
of solvers, Fun3D and the physical models from
Laura and Vulcan were ported from a mixture of
C and Fortran 77 to Fortran 95. Porting For-

tran 77 code to Fortran 95 was initially thought

dusers.erols.com/dnagle/
ewww.gnu.org/software/make/make.html
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to be a simple process that could be accommo-
dated by using a combination of homegrown scripts
and a commercial software package, Foresys

�.f

Foresys
� was helpful when implicit none was

requested because it would automatically declare
all variables used in the routine. It also provided
instructive diagnostics for various classes of errors
during the conversion process and when replacing
common blocks by modules. However, it invariably
reformatted lines and destroyed symmetric forms
of equations that had been carefully introduced by
earlier authors, and it repositioned or silently elimi-
nated comments. Eventually, Ruby and Perl scripts
were crafted to handle tedious, error-prone opera-
tions such as code indentation and the conversion of
continuation symbols without losing the comments
and other structured formatting. The remainder of
the conversion was done manually.

As the team had a chance to study the legacy
structure, it became clear that the old arrangements
of common blocks and subroutines were counter to
the modularity and extensibility the team was try-
ing to create. So, during the port to Fortran 95,
common routines and functions were extracted and
placed in a single, shared library directory, while
data structures such as boundary conditions, grid
metrics, and solution quantities were generalized to
handle an arbitrary number of equations and were
encapsulated in derived types.

The use of derived types provides additional flex-
ibility over Fortran 77; however, early versions
of Fortran 95 compilers often displayed a signif-
icant performance penalty when these constructs
were used in the computationally intensive regions
of the solver.g Consequently, the restructuring ef-
fort often required reworking these core routines to
recover performance comparable to the legacy solver.

This transformation took nearly a year and was
not without difficulties, but it was definitely a worth-
while effort because it gave team members hands-on
experience with a code most had never seen before,
instead of merely accepting the results of an auto-
matic conversion. The conversion process also gave
the team an opportunity to create and tailor a cod-
ing standardh suited to their style and knowledge.
In addition, the total lines of source code had been
reduced by some 40 percent, in itself a significant
benefit from the standpoint of code maintenance.

f
Foresys

� is a trademark of Connexite S.A., for more
information see www.simulog.fr/is/2fore1.htm.

gSee Appendix B on page 17 for current results.
hSee Appendix A on page 16.

Modularity and Encapsulation

Modularization, along with abstraction, informa-
tion hiding, and encapsulation, are also means used
to enhance code maintainability and bring the ad-
ditional promises of code reuse, reduced complexity,
extensibility, and orthogonality.i Abstraction is the
process of picking out common features of objects or
procedures and replacing them with a single, more
general function. Information hiding reduces com-
plexity by hiding details of an object or function
so the developer can focus on the object without
worry about the hidden details. Encapsulation, or
combining elements to create a larger entity, is one
mechanism to achieve this.

The Fortran 95 constructs of modules, inter-
face statements, public and private declarations, and
derived types were employed to implement these
ideas. Fortran 95 modules are similar to the
class construct in object-oriented languages, while
derived types are akin to structures. Modules
were designed to abstract types of operations, e.g.,
file input/output, memory allocation, interproces-
sor communication, execution timing, linear algebra,
and so on. Many modules employ a generic inter-
face statement that automatically detects the type,
kind, and rank of the calling arguments at compile
time and matches them to an appropriate low-level
routine, which allows them to be largely indepen-
dent of any particular flow solver since data is only
exchanged through well-defined interfaces. Many
of these Fortran 95 interface statements are pro-
duced automatically in the build process by a Ruby
script which emulates the template system available
in C++. In the remainder of this section, specific
examples are given to demonstrate the benefits of
modularization and data encapsulation.

Memory allocation

Array memory allocation is handled by a single
interface statement in a module that automatically
detects the type, kind, and rank of the argument and
calls the appropriate low-level routine for the alloca-
tion and initialization. This abstraction streamlines
memory allocation requests throughout the code
since memory tracking and diagnostics can be placed
and maintained in a single location.

Parallel Communication

Originally, the baseline solver relied on a shared-
memory implementation specific to SGI® hardware
and was not portable to the increasingly popular
cluster-based, distributed-memory computing plat-

iIn this case orthogonal is used in the sense of mutually
independent or well separated.
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forms. Moreover, the communication operations
were dispersed throughout the solver, and any mod-
ifications to the communication model needed to be
made in numerous locations throughout the code.
In the current work, the message passing interface
(MPI) standard was selected. Interprocessor com-
munication has been abstracted from all but the
lowest levels of the source code and is now encap-
sulated in a single module.

With this centralized approach to MPI communi-
cation, it is now trivial to make sweeping changes
to the parallel aspects of the code, including com-
pletely removing it to produce a sequential version
of the code. This abstraction also benefited the
team when the high-energy, reacting-gas portion of
the code was parallelized successfully on the first at-
tempt. Normally, a developer would expect to spend
considerable time debugging interprocessor commu-
nication.

Boundary Conditions

Another area in which modularity and data en-
capsulation have provided a significant benefit is in
the treatment of boundary conditions. The baseline
Fun3D solver was extremely deficient in its ability
to handle a wide range of boundary conditions. The
user was restricted to inviscid, inflow/outflow, and
viscous boundary types. Information required for
these boundary types was contained in hard-coded
data structures specific to each condition and were
dispersed throughout the code. This design had be-
come extremely limiting in recent applications and
was clearly not sufficient for extension to high-energy
flows, where a large array of boundary condition
types are required.

Using Fortran 95 derived types to encapsulate
boundary condition information, the baseline solver
was completely refactored to allow the straightfor-
ward addition of new boundary types. For any given
boundary condition, all necessary data are contained
in a boundary condition type. An array of these de-
rived types then constitutes all boundaries in a given
problem. For boundary conditions requiring addi-
tional physical data, a link to an additional data
structure specific to that boundary condition is en-
capsulated. Derived types also allow the additional
enrichment of the data structure without modifying
argument lists. In this manner, any number of dif-
ferent boundary groups can be efficiently handled at
the higher levels of the solver and unrolled for use
as needed.

It should be noted that this data structure also
allows for a natural handling of cost functions based
on boundary data required for the design and grid

adaptation capabilities within FAAST. Objective
functions composed of viscous and/or pressure con-
tributions can easily be specified on any subset or
combination of boundary groups such that a specific
flow feature or region of the domain can be targeted.
For example, if it is determined that a strong shock
on the outboard section of a wing is responsible for
a severe wave drag penalty, a cost function can eas-
ily be formulated based solely on the contribution
of that boundary group to the total drag. This
method represents a substantial improvement over
the baseline capabilities, where all boundary groups
necessarily contributed to a given cost function.

Gas Physics

Modules, interfaces, and derived types are used
extensively for the gas phase physics modules, which
include thermodynamics, transport properties, ther-
mal relaxation, and chemical kinetics. The thermo-
dynamics module contains the initial interface from
the flow solver to gas phase physics. The transport
property module interfaces with the flow solver and
the thermodynamics module to define molecular vis-
cosity, conductivity, and species diffusivities. The
thermal relaxation module is engaged when popula-
tions of excited states (rotational, vibrational, and
electronic modes) cannot be defined by a single tem-
perature. This module provides the source terms
that define energy exchange among the available,
thermally distinct modes. The chemical kinetics
module provides source terms for the species con-
tinuity equations that define the rate of production
or destruction of species.

In conclusion, it should also be noted that because
the HEFSS project started with a large legacy code
base and modularity and data encapsulation are elu-
sive goals, which are really only earned through
experience, code architecture changes are ongoing.
In addition, there are drawbacks to modularization
that must be considered. For example, it was origi-
nally anticipated that compilers could optimize high-
level constructs like derived types as if they were
written using their lower-level counterparts. How-
ever, as Appendix B on page 17 reveals, such is not
always the case in practice.

Collaborative Software Development
CFD software development at Langley has tradi-

tionally been performed in a rather unconstrained,
self-governed environment. As mentioned earlier,
most codes have typically been developed by one, or
perhaps two researchers. This paradigm has worked
relatively well and has produced software packages
widely used by industry and academia.
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Unfortunately, such software development strate-
gies often result in codes that are complex and
burdensome to maintain, and frequently subsequent
working groups produce distinct versions of the code
which are often incompatible with each other and
previously released versions. Moreover, cohesiveness
and portability are typically lost, as additional re-
searchers contribute to the code, using their own
coding style and practices.

In contrast to this ad hoc approach to code de-
velopment, the HEFSS team sought to incorporate
the software industry’s best practices, not only be-
cause of the challenges of working as a cohesive team,
but also to find methods which would extend the
life cycle of the new code. Everyone on the team
had experienced the pain of adding new capability
to a large, existing code which was developed in an
ad hoc manner. Even a seemingly innocuous bug
fix was unnerving because there was no repeatable
method to discover whether the fix would break ex-
isting capability in some subtle manner.

A survey of industry best practices for software
development was conducted, which included spon-
soring a local ICASE lecture series entitled “Mod-
ern Programming Practices.”j Meanwhile, two
pathfinder projects were conducted to gain hands-on
experience. Detailed discussion and extensive refer-
ence lists are available in References 10 and 11.

As described earlier, the emerging body of ag-
ile software development methodologies were deter-
mined to have the best fit with the inconstant nature
of a scientific research environment. Specifically, Ex-
treme Programming (XP)24 appeared to be the most
mature, although at the time, documentation was
limited to a few websites.k In addition, recent ex-
perience with ISO 9001 edicts tended to steer the
team away from defined process management tech-
niques implicit in methodologies like the Capability
Maturity Model®25 and its associated Team Soft-
ware Process�.26

The collection of collaborative software develop-
ment practices described herein evolved from weekly
meetings in which the challenges and possible solu-
tions were discussed. Issues discussed cover fresh-
start versus retro-fit versus restructuring of existing
code; language selection; coding standards; mod-
ularization and maintainability versus efficiency;
acceptance testing; source code management eti-
quette;l and documentation. As the HEFSS team
initially struggled with and then embraced new soft-

jSee www.icase.edu/series/MPP/
kwww.c2.com and www.extremeprogramming.org.
lSource code management etiquette—when source code

should and may be committed to a common repository

ware development practices, other teams (CAD-
to-Grid, Design Optimization) within the FAAST
project adopted many of the same practices.

Specific software development techniques are dis-
cussed in the following sections, namely: XP, project
retrospectives, status meetings, other communica-
tion mechanisms, and documentation.

Extreme Programming

XP is founded on four values: communication,
simplicity, feedback, and courage. It was designed to
keep the right communications flowing by employing
many practices that cannot be done without commu-
nicating. XP also gambles that it is better to do a
simple thing today and pay a little more tomorrow
for any necessary changes than to do a more compli-
cated thing today that may never be used; that is,
in this universe one cannot “save time.” Meanwhile,
XP’s feedback mechanisms cover many time scales
since optimism is an occupational hazard of pro-
gramming and feedback is the treatment. Finally,
courage enables one to escape local optima.

Built from this value system, XP consists of 12
practices shown in Table 2 on the next page. Also
shown in the table is the level to that the HEFSS
team has adopted each practice. The ensuing sec-
tions serve to briefly describe each practice and also
to describe a practice in the context of the HEFSS
team. Adjacent to the start of each section are quo-
tations from Reference 24.

Sustainable Pace Productivity
does not
increase with
hours
worked; tired
programmers
are less
productive
than
well-rested
ones.

Formally known as “40-hour week,” the sustain-
able pace practice probably ranks the highest on
the common sense scale, but it is also the most fre-
quently violated by managers and developers alike.
Since the majority of the research conducted with
the HEFSS project is years from commercial use,
compulsory overtime is simply not part of the work-
ing environment.

Metaphor Guide all
development
with a simple
shared story
of how the
whole system
works.

Employing a system metaphor which all par-
ticipants can understand facilitates communication
both within the code and within the team. Since
all the team members are familiar with CFD jargon,
the naive metaphor is used.

Coding Standards Programmers
write all code
in accordance
with rules
emphasizing
communica-
tion through
the code.

Coding standards are usually dreaded and met
with resistance because they are seen as adding a
superfluous burden. After a brief discussion of the
genesis of HEFSS’s coding standard, several reasons
are provided to demonstrate why a coding standard
is not only necessary but actually quite beneficial for
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Table 2 Current level of XP adoption.

Practice Adoption Comments

Sustainable pace Full No compulsory overtime.

Metaphor Full Using naive metaphor, i.e., CFD jargon.

Coding standards Full See Appendix A on page 16.

Collective ownership Full Anyone can change any piece of code.

Continuous integration Full Automated build and test on three computer architectures.

Small releases Partial A portion of code base is currently export restricted; seeking to
relieve this constraint.

Test-driven development Partial Fortran 90 unit test framework not widely used; however,
Ruby codes are typically created using TDD.

Refactoring Partial Performed, but not mercilessly, due to lack of unit test coverage.

Simple design Partial Upfront, complex design is hard to resist, especially without
strong test-driven development and refactoring.

Pair programming Partial Practiced, but not exclusively.

On-site customer Partial No outside customer is providing a business perspective,
currently self serving as customer for research products at hand.

Planning game None Have yet to invoke project management side of XP.

a team software development project.

During the transition of legacy code from For-

tran 77 to Fortran 95, a rough guess at a coding
standard was created and used by the entire team.
Based on this experience, a more detailed revision
was created. (See Appendix A on page 16.) One
duty of the full-time contractor assigned to the team
is to enforce the coding standard as new content is
committed to the repository. This function is slated
to be replaced by an automated agent that parses
the source code.

Given a thoughtfully crafted coding standard, im-
proved source code readability is a natural benefit
through consistent indentation, alignment, naming,
and commenting conventions. However, the cod-
ing standard must be appropriately tailored to the
programming language. For example, Fortran 95
permits declaring an array variable and later di-
mensioning it through a separate statement. This
multi-line variable declaration can be hard to follow
and can create confusion, thus prompting a line in
the coding standard to place all attributes of the
declaration on a single line, if possible. Another ex-
ample is that the variable names of arguments in the
calling and called routines do not have to match.
However, retaining the same names for both im-
proves global comprehension of the code and makes
code-generated documentation more coherent.

A coding standard also serves as a sentinel against
the use of vendor-specific language extensions or de-
preciated elements of the language that do not lend
themselves to portability across various platforms.
For example, Fortran 95 does not contain a com-
plete set of intrinsic functions for accessing system-
level utilities or timing, but many compiler vendors

offer extensions like system() and etime(), which
are tempting but create portability headaches.

Collective Ownership Anyone can
change any
code
anywhere in
the system at
any time.

The ideal situation for team software development
occurs when a pair of developers looks at a given
piece of code and does not feel the need to change
the indentation, and so forth, and furthermore can-
not recall whether they wrote the code in the first
place. No single developer claims code ownership,
yet all share responsibility; all source code is eligible
for changes by any team member. Using a coding
standard is absolutely essential to reach this goal.

Collective code ownership was a completely for-
eign concept to team members prior to this project.
Initial acceptance of this philosophy came about be-
cause the original developer of the Fun2D/3D code
was no longer at Langley, and the current “code
steward” did not feel comfortable claiming the code
as “his.” Both the software development practices
mentioned above and the tools the team uses for
effective collaboration have cemented the idea of col-
lective code ownership to the extent that members
feel comfortable changing the code without asking
permission of another developer.

Due to the team-oriented nature of the project and
the amount of source code involved, a widely used,
source code management system is used, the Con-
current Versions System (CVS).m CVS oversees a
central repository of the source code and allows each
team member to concurrently develop and modify
sections as needed. Any changes or additions to a
local working copy can then be committed back to
the repository, whereby they will be available to the

mwww.cvshome.org
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entire team.
CVS maintains complete documentation of any

changes made during the course of code develop-
ment, and previously modified or deleted code can
be resurrected at any time by any member of the
team. In addition, the system allows team members
to work on platforms located virtually anywhere.
The use of a software management tool allows for
nearly seamless integration of a number of widely
varying research projects and eliminates the need
for multiple branches of a code.n

Continuous IntegrationIntegrate and
build the

system many
times a day,
every time a

task is
completed.

In a team environment that has many developers
who all contribute to a code base on a daily ba-
sis, integrating those changes into a common code
base quickly becomes a major undertaking unless
new code is integrated and tested as soon as practi-
cal, preferably within a few hours.

Continuous integration avoids diverging or frag-
mented development efforts, in which developers are
not communicating with each other about what can
be shared or reused. Simply stated, everyone needs
to work with the latest version of the code base.
Making changes to obsolete code causes integration
headaches.

Originally, developers manually ran the Hefss

test suite during code modification, but not all devel-
opers consistently ran the test suite before checking
their code modifications into the repository, so an
automated process was sought. At first the Unix-
based cron utility was used to check out a fresh
version of the CVS repository, to compile the suite
of codes, and to run regression tests on three differ-
ent architectures and compilers every night. How-
ever, the Extreme Programming community soon
reminded the HEFSS team that “[daily builds] are
for winning-challenged people who can’t integrate
every 5 to 15 minutes and run all the tests at every
integration,” and they went to a true continuous in-
tegration mode of operation on dedicated machines.

The continuous integration process restarts the
build and test process after each successful set of
tests. Test results are automatically logged on a
web server, and failures are e-mailed to all devel-
opers listing all CVS commits that were performed
since the last successful build. With this system,
errors are detected within a couple hours, and the
integration failure e-mail provides a strong source of
peer pressure on developers to run a range of tests
before committing changes.o

nThis CVS controlled LATEX document was jointly com-
posed by the team using such an approach.

oSee

Small Releases Put a simple
system into
production
quickly, then
release new
versions on a
very short
cycle.

Feedback is the core idea behind the small re-
leases practice. Get the software out there and learn
from it. Strive to make the transition from pure
software development to software maintenance as
quickly as possible. Small releases are enabled by
other practices like simple design, automated test-
ing, and continuous integration.

The source code management system described
previously enables the team to automatically cre-
ate releases by merely “tagging” snapshots of the
repository for which all the tests pass successfully
during the continuous integration cycle. So rou-
tinely, the team is typically making several releases
throughout any given day. This snapshot feature
also facilitates the management of releases to out-
side users by providing accurate technical support
tailored specifically to the exact source code snap-
shot released to a given party. Unfortunately, the
Hefss code currently has some restrictions on its
external distribution; however, it is being used in
house by several people.27

Test-Driven Development Any program
feature
without an
automated
test simply
doesn’t exist.

Since the time to fix a software defect (aka “bug”)
scales exponentially with the time lag between in-
troduction and detection,28 it is extremely advan-
tageous to trap defects as early as possible during
development.

Previously known as merely “Testing,” this prac-
tice has blossomed into a whole field in itself.29 Test-
driven development within XP has two components,
one centered around developers and the other cen-
tered around customers, or end-users. Developers
write unit tests so that their confidence in the code
can become part of the code itself, while customers
write acceptance tests so that their confidence in the
code’s capabilities can also become part of the code.
These automated tests allow confidence in the code
to grow over time, allowing the code to become more
capable of accepting change.

Unit tests are intended to verify small quanta of
functionality within a code and should be automated
and run to completion in fractions of a second. The
unit tests serve as a development guide by specify-
ing the desired capability, interfaces, and expected
output of a functional unit. Unit tests also serve as
mobility enablers during code architecture shifts to
ensure a safe path was taken. Mobility allows code to
be easily reused and to have functionality extended
while safely maintaining current functionality. Note
that in most cases, there will be more lines of unit

www.martinfowler.com/articles/continuousIntegration.html
for more information.
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test code than actual production code.
Acceptance tests check the interactions between

code elements that unit tests cannot cover and doc-
ument the existence of a particular code feature.
Preferably, customers write acceptance tests.

Since the Hefss code contains active research in
many different disciplines that coexist in the same
framework, work in one field can introduce errors
in others through the common framework. These
errors can go unnoticed if the code, in part and in
whole, is not verified in a repeatable manner. One
well-known approach to finding defects and ensuring
that the code produces repeatable, verified answers
is through automated testing.

For example, an unforeseen interaction with mod-
ule A is introduced by modifying code in module B.
If the problem in module A goes undetected for a
month, it may be difficult to link the problem to an
interaction with module B or to other code modifi-
cations made during that month. If the problem in
module A is detected in minutes by an automated
testing framework, the interaction of module A and
module B can be clearly identified before other code
modifications cloud the picture.

The current project began with legacy code
that did not contain a single unit test. Because
retrofitting an exhaustive set of unit tests to the ex-
isting legacy code was deemed too expensive, the
original intent was to introduce unit tests as new
code was added and old code was refactored. To
date, however, unit testing has not been widely
adopted by the team despite the creation of a unit
testing framework for Fortran 95.p Currently, unit
tests only cover a very small percentage of the code
base. However, significant unit testing coverage is
being built into Ruby-based wrappers used for test-
ing and grid adaptation. Additionally, some of the
low-level Fortran library routines are becoming
test-infected, for example, character-to-number con-
version routines and linear algebra routines.

The acceptance tests for the Hefss code are a
suite of over 240 regression tests performed by a
series of Makefiles. These regression tests simply
compare the convergence history of residual, force,
and moment calculations (or other output appropri-
ate to the code under test) to previously recorded
executions to machine precision (not just 2–3 dig-
its). These results are referred to as “golden files.”
These test fixtures ensure that the current code gives

pTo facilitate both the writing and running of unit tests for
Fortran 95 source code, a testing framework called F95unit

has been developed using Ruby. F95unit has a model sim-
ilar to the unit-testing frameworks for other languages, e.g.,
JUnit, PyUnit, Ruby test/unit.

the same discrete answer as the original golden file.
Makefiles were initially selected to perform these
tests because the tests were seen as a natural exten-
sion to code compilation.q The compile operations
were incorporated into the tests, so the tests are
always performed with an executable file produced
from the current source files. Test cases can be run
on an individual basis or as an entire suite.

The current set of acceptance tests for Hefss was
added incrementally to first cover the legacy func-
tionality of Fun3D and then new functionality, as it
was added to the suite. The Makefiles that perform
the tests have become complex, hard to maintain,
and are being replaced in an incremental fashion
with unit-tested Ruby. This unit-tested Ruby frame-
work should be much easier to maintain and allow
more flexibility. The Ruby framework can be reused
to link a number of the codes together to perform
complex functions such as design optimization and
grid adaptation, in addition to testing.

Refactoring Programmers
restructure
the system
without
changing its
behavior to
remove
duplication,
improve com-
munication,
simplify, or
add
flexibility.

To extend a code’s viable lifetime and strive for
the simplest design that will work, developers need
lots of practice modifying the design, so that when
the time comes to change the system, they will not
be afraid to try it. Constant refactoring is abso-
lutely essential to keeping the cost-of-change curve
from growing exponentially as time increases. Refer-
ence 30 teaches developers how to refactor and why.

Automated testing, as discussed earlier, is abso-
lutely essential to refactoring. Without a safety
net of tests, subtle shifts in the code’s fundamental
architecture toward a more agile, clean, and under-
standable design is extremely difficult and frustrat-
ing. Testing allows developers to modify code that
they did not write so that the original developer can
be sure that modified routines still perform the orig-
inal purpose correctly, if the appropriate unit tests
pass. This process leads to an environment in which
the tests are paramount and the code can be easily
modified to add new functionality, improve speed,
or become more readable.

Due in part to the lack of extensive unit testing in
the Hefss code, many refactorings are delayed, cre-
ating a backlog of work. Occasionally, the team will
tackle some of these tasks, but so far the backlog
continues to grow. A renewed effort at promot-
ing the benefits of test-first programming is being
made within the team by drawing attention to the
inefficiencies inherent in the “Code-n-Fix” style of
programming.

qIf the code is modified and needs to be recompiled, it
should also be tested.
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Simple DesignThe system
should be

designed as
simply as

possible at
any given
moment;

extra
complexity is

removed as
soon as it is
discovered.

Simple design is defined by two ideas: One is the
YAGNI principal, otherwise known as, “you aren’t
gonna need it,” and the other is a chant, “do the
simplest thing that could possibly work.” These
principals should be internalized and provide instinc-
tive reactions to “gold plating” or other ideas that
do not seem to fit the current task. A simple design
should not contain ideas that are not used yet but
that are expected to be used in the future. However,
one should pay attention to the word “expected.” If
you are somehow assured of the future, and that a
given idea will be necessary, design with it in mind,
but do not implement it now because you will best
know how to add it when the time comes.

As with refactoring, the lack of unit test coverage
within Hefss code makes this practice difficult to
follow completely. For many developers, it is also
typically contrary to years of prior practice; regard-
less, the team can now at least recognize complexity
and several major strides have been made to reduce
existing manifestations.

Pair ProgrammingAll
production

code is
written with

two
programmers

at one
machine.

The initial reaction to the idea of two people
working on the same task at the same computer at
the same time is usually negative. However, this
reaction is typically caused by painful experiences
associated with “pair debugging” or simply misun-
derstanding the true nature of pair programming
itself. Pair programming is not one person pro-
gramming while another person watches. It is more
akin to an animated conversation, facilitated by a
white board, where one participant might grab the
marker from the other and make a change while
the first is still talking. Pair programming should
be highly dynamic, and the participants should be
able to switch “driver” and “navigator” roles at any
point. Besides making programming more fun, pair
programming provides an extensive host of bene-
fits, such as streamlining communication, propagat-
ing knowledge, and continuous code reviews. Pair
programming also greatly enhances collective code
ownership. For a detailed discussion of the art of
pair programming, see Reference 31.

Within the HEFSS team, frequent pair program-
ming is highly encouraged but not mandated. It
is used for all aspects of code development, for ex-
ample, debugging, teaching, refactoring, and adding
new features. Intimately involving a number of re-
searchers at the lowest levels of code development
ensures a relatively high truck number.r Traditional

rThe truck number is the size of the smallest set
of people in a project such that, if all of them got

CFD codes at Langley are developed by individuals
or small teams and most of the resulting code base
has a truck number of 1 or perhaps 2, whereas the
current collaborative team approach yields a value
near 10.

On-Site Customer Include a
real, live user
on the team,
available
full-time to
answer
questions.

This XP practice is intended to remove the com-
munication barriers present in a typical contracted
piece of software where a slew of requirements and
specifications are defined upfront and then the “code
monkeys” are let loose to grind out the required
piece of software. The pitfalls with this sort of con-
tract negotiation are many, the least of which is that
the customers seldom know what they want before
they see a working prototype. By placing an end
user with the team, XP is nearly guaranteed of de-
livering a relevant, useful piece of software.

As discussed in Reference 11, the scientific re-
search environment often creates a situation in which
the developers are their own customers. This sce-
nario requires diligent role playing to keep technical
and business needs separated. Currently, the HEFSS
team members largely act as their own customers,
with only very minor input from project stakehold-
ers.

The Planning Game Quickly
determine
the scope of
the next
release by
combining
business
priorities and
technical
estimates; as
reality
overtakes the
plan, update
the plan.

XP uses a four-dimensional space to plan and
measure progress: time, cost, quality, and scope.
Scope is typically ignored by many project planning
mechanisms, but it plays a central role in XP. The
planning game has two levels: iteration planning and
release planning. The basic premise of the planning
game is that business people determine scope, pri-
ority, composition of releases, and dates of releases,
while technical people provide estimates, design con-
sequences, the process, and detailed scheduling.

As shown in Table 2 on page 7, the HEFSS team
has not yet begun using this practice. However, full-
cost accounting practices now being put into place
may force this final XP practice to be invoked.

Project Retrospectives

Sometimes referred to as XP’s “thirteenth prac-
tice,” project retrospectives32 are important com-
ponents of tailoring a process to a given situation.
Every few months, the team takes time to reflect on
past events and accomplishments. The goal is not
faultfinding, but instead the goal is to learn how to
do better in the future. During these sessions, the
team begins with a discussion guided by the follow-
ing three questions: what has gone well? what could

hit by a truck, the project would be in trouble. See
c2.com/cgi/wiki?TruckNumber for further discussion.
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be improved? and with what new techniques or tools
should the team investigate? Currently these ses-
sions are not as formal or wide-reaching as some of
the formats presented in Reference 32.

Scrum Status Meetings

A daily, stand-up meeting is normally associated
with XP, but it is not explicitly called out as a prac-
tice or given much structure, except that nobody
can sit during the meeting, it should be short, and
it should happen every day before developers start
pair programming. The HEFSS team has adopted a
similar, but more structured status meeting format
from another agile methodology, Scrum.8

A Scrum status meeting is held daily by an ap-
pointed “Scrum Master” and lasts no longer than
15 minutes. The meeting has an open attendance
policy, but only team members are allowed to talk.
The team members, in turn, succinctly report three
things: what they did since the last meeting, what
they will do by the next meeting, and what got in
the way (impediments). Additional discussion dur-
ing a Scrum is strictly limited to clarification-related
questions and to note topics that will be discussed
at a later time by interested parties. The Scrum
master plays the role of gatekeeper and takes notes.
Later, the Scrum master compares performance with
past commitments and follows up on situations that
appear to be stalled. Most importantly, the Scrum
master is responsible for removing impediments.

Scrum status meetings have several benefits from
a management perspective. They offer a quick and
easy mechanism to collect data for status reports
and yield an immediate sense of whether a team is
in trouble. By using Scrums to their benefit, man-
agement can avoid what Peopleware33 claims is the
ultimate management sin: wasting people’s time.

Since the HEFSS team is currently dispersed
throughout the local campus and most developers
are not full time, the Scrum status meeting is only
held weekly. In addition, the team also allots some
time afterward to address any topics which may have
arisen during the Scrum. This post-Scrum gather-
ing is governed by Open Space’s Law of Two Feet,s

which states that if during the course of any gather-
ing, persons find themselves in a situation in which
they are neither learning nor contributing, they must
use their two feet and go to some more productive
space.

sSee www.openspaceworld.com/users guide.htm for more
discussion.

Other Communication Mechanisms

Since communication and cooperation are essen-
tial to the success of the effort, several additional
tools are employed in addition to the communi-
cation mechanisms implicit in XP. The first is
a Majordomo-based electronic mailing list which,
serves to facilitate communication among team
members that are distributed across the local cam-
pus. In addition to the E-mail list and weekly meet-
ings, the team also uses a web-based collaborative
tool known as a Wiki.t A Wiki allows users to freely
create and edit web page content using any web
browser. Wikis have a simple text syntax for creat-
ing web page elements, and they dynamically create
a new web page when they encounter a CamelCased
word (a mixed-case word containing at least two cap-
itals). The team uses the Wiki for a number of
purposes. For example, the testing status page is
contained in the Wiki so that adding new data to
the page can be done by anyone. The Wiki is also
used to share data for emerging test cases that have
yet to be incorporated into the automated testing
system, and it also serves as a repository for other-
wise tacit knowledge, for example, CompilerNotes,
AvoidingSshPasswords, CreatingNewTestCases.

Documentation

Documentation for the Hefss code takes many
forms. While currently the Hefss code itself lacks a
formal users’ manual,u it does have a more exacting
form of documentation, a large set of regression test
cases. Each test case directory contains everything
needed to run a given type of case and can usually
be readily adapted to a new type of case.

Meanwhile, developers have three tools available
for browsing the Hefss code base. Code browsing
can take many forms and be done for various rea-
sons; consolidating them into a single tool has so far
proven to be an elusive goal.

The simplest tool is a web-based rendering of the
CVS repository, generated on-the-fly by the open
source ViewCVS

v tool. This approach is based
on the CVS repository’s file directory structure and
thus lacks the ability to navigate the source by us-
ing internal structure. However, it is the only tool
that readily provides access to prior versions of the
source code.

A second tool, developed by a support service
contractor using C++, parses the source code and
generates web-based output by using a commercial

twww.wiki.org
uThe users’ manual is being written.
vviewcvs.sourceforge.net
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tool, Understand for Fortran,w which extracts
calling tree graphs and code statistics. The C++
code also creates tables of variable declarations and
renders comments associated with routines that are
placed according to the coding standard. The web
pages generated by this tool include source code list-
ings that have been formatted with line numbers and
are keyword-colored to enhance readability.

A third code-browsing opportunity leverages the
open source code documentation system, RDoc,x

which was originally intended for documenting Ruby
source. A short extension for this system was writ-
ten to parse and format Fortran 95y and has sub-
sequently been accepted into the RDoc distribution.
The RDoc system extracts a graph of the code source
based on files, modules, and routines. From these
data, it can generate frame-based web pages, XML,
or Windows help files that can be used to navigate
the calling structure.

Research Products
To illustrate some specific examples of lessons

learned during the current effort, several research
focuses are discussed briefly below. The team’s ex-
perience has been largely a positive one; however, it
is clear that properties of modularity and extensibil-
ity are earned through experience and not designed
into a system upfront.

Time-Accurate Simulations

In support of both passive and active flow con-
trol research at Langley, the perfect-gas capabilities
in the solver have been extended to higher order
temporal accuracy. The validity of the approach
has been verified through numerical experiments in
which an order property consistent with a second-
order scheme has been demonstrated for turbulent
flows. With a trivial amount of effort, the mod-
ifications required to obtain these results in the
perfect-gas realm were extended to include reacting-
gas simulations. Current work is focused on evaluat-
ing third- and fourth-order time-integration schemes
for perfect-gas flows,34 which should also be readily
extendable to more complicated physical models as
needed.

Incorporating Multiple Element Types

Initially, the Hefss solver made sole use of tetra-
hedral element types to discretize a given domain.
However, the ability to accommodate additional ele-
ment types such as prisms, hexahedra, and pyramids

wwww.scitools.com/uf.html
xrdoc.sourceforge.net
yThis extension was accomplished with only 120 lines of

code.

provides greater flexibility to match a given element
type to a particular flow topology, and the extension
to include such elements in all aspects of the pack-
age is currently ongoing. This effort represents one
of, if not the, most substantial modifications to the
software to date since it extends the fundamental
data structure used throughout the code base. The
pre-/post-processor and solvers, as well as all of their
associated linearizations for optimization and adap-
tation, require considerable modification at the most
fundamental levels. This undertaking has revealed
many areas in which additional refactoring is still
required before an acceptable level of modularity is
achieved.

Two-Dimensional Capability

A major advantage of pursuing mixed-element
discretizations is the ability to recover a truly
two-dimensional solution capability, which can be
achieved through the use of prismatic and hexahe-
dral elements in the spanwise direction, such that
flux balances need only be performed in the plane of
symmetry. Axisymmetric flows can also be readily
accommodated by adding source terms. The ben-
efits of such an approach are substantial, in that a
separate code need not be maintained for such prob-
lems, a longtime burden for the original Fun2D/3D
developers. In addition, all algorithms and physi-
cal models available in the three-dimensional path
are immediately available for two-dimensional so-
lutions, which allows basic research to be carried
out on less costly two-dimensional problems. When
computations are extended to three dimensions, the
inconsistencies normally associated with switching
between two separate solvers are no longer an issue,
and the results are not contaminated by differences
in discretizations or solution methods.

Multigrid Algorithms

A major thrust of the FAAST project is aimed at
achieving textbook multigrid efficiency (TME), an
effort that could drastically reduce solution times
for complex problems.35 Since the baseline unstruc-
tured solver used as the foundation for the current
work did not include options for multigrid accelera-
tion, much work has focused on implementing such
a capability.

The use of an agglomeration multigrid algorithm
relies on an edge-based discretization of the govern-
ing equations; this requirement precludes the abil-
ity to compute solutions to the full Navier-Stokes
equations on mixed-element grids. For this rea-
son, a geometric non-nested multigrid approach has
been initially chosen for the Hefss solver. Opera-
tions such as coarse-grid partitioning and intergrid
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transfers in a complex domain-decomposed environ-
ment have been developed, and a simple FMG/FAS
multigrid algorithm has been implemented. Al-
though this capability has been coded primarily
with perfect-gas applications in mind, the scheme
has been implemented such that users perform-
ing reacting-gas computations will also be able to
make immediate use of this research without the
need to duplicate extensive low-level code develop-
ment typically associated with geometric multigrid
on domain-decomposed unstructured meshes.

One component necessary to achieve TME is a
line-implicit solver to overcome stiffness associated
with high-aspect ratio grid elements. The ability to
form lines suitable for implicit relaxation, to obtain
an appropriate partitioning, and to perform an ex-
act inversion along each line has been developed and
is applicable to any set of physical equations being
solved.15

Incorporating High-Energy Physics

The thermochemical nonequilibrium models in
Hefss are identical to those in Laura, but their
implementation is substantially different. Laura

made extensive use of precompiler directives that
allocated memory and defined the code path accord-
ing to a diverse set of options. This compilation
strategy evolved from an absence of dynamic mem-
ory allocation capability in Fortran when Laura

was originally coded and because of a desire to com-
pletely eliminate any model-dependent conditional
statements within loops that could compromise vec-
tor efficiency. Any change in the gas model required
a recompilation of the source code. Laura employs
a script to guide a user through the various permuta-
tions and combinations of options, but the process is
burdensome to a user conducting parametric studies.
In contrast, Hefss only needs to be compiled once
on any platform, regardless of the desired physics
model options.

Model parameters in Laura are initialized in
block data routines; these routines have been re-
placed by formatted data files that use conventional
formatted reads and namelists in the Hefss solver.
Model parameters that are unlikely to be changed by
the user (thermodynamic curve fit constants, species
molecular weights, and heats of formation) are as-
sembled in one set of data files. Gas model options
that are likely to be changed by the user on a fre-
quent basis, such as the chemical composition of the
gases entering the domain or the thermochemical
model, are assembled in a separate file. This sep-
aration minimizes the amount of setup required to
perform a given analysis.

Adjoint Solver and Sensitivity Analysis

As important as the software practices in this
effort are to the development of new analysis ca-
pabilities, they are absolutely critical to the suc-
cess of the design element under FAAST. In Ref-
erences 13, 14, 15, a discrete adjoint capability has
been developed for the solver. This effort represents
the only capability of its kind and relies on several
hundred thousand lines of exact hand-differentiated
linearizations of the preprocessor, flow solver, and
mesh movement codes with respect to both the de-
pendent variables and the grid coordinates. For
free-stream conditions of Mach 0.84, a 3.06 degree
angle of attack, and a Reynolds number of 5 M, sen-
sitivity derivatives of the lift and drag coefficients,
with respect to several shape design variables for
fully turbulent flow over an Onera M6 wing,36 that
were computed by using the discrete adjoint formu-
lation, are shown in Table 3 on the next page. The
adjoint results are in excellent agreement with those
obtained using a complex-variable approach37 with
a step size of 1×10−30. This accuracy can easily
be compromised by a single error anywhere in the
source code. With a dozen researchers modifying
code on a daily basis, the use of continuous integra-
tion and automated testing is critical in maintaining
such accuracy. Just as residual and force conver-
gence histories are monitored to machine accuracy
for the flow solver on several architectures, simi-
lar quantities are constantly tested for the adjoint
solver and gradient evaluation codes. This constant
testing ensures that discrete consistency between the
analysis and design tools is always maintained, re-
gardless of the modifications being implemented in
other parts of the software.

Similar to the continuous integration and testing
performed for the hand-differentiated code, a Ruby
code has been developed similar to the effort de-
scribed in Reference 38 to automatically convert the
codes in the Hefss suite to a complex-variable for-
mulation. This capability can immediately recover a
forward mode of differentiation for the entire solver
at any time, with no user intervention. This proce-
dure is also continuously tested.

Design Optimization

Approximation and Model Management Opti-
mization (AMMO) techniques39,40,41 have been re-
cently added to the Hefss software set. AMMO
is a methodology aimed at maximizing the use of
low-fidelity models in iterative procedures with oc-
casional but systematic recourse to higher-fidelity
models for monitoring the progress of the algorithm.
In current demonstrations, AMMO has exhibited

13 of 20

American Institute of Aeronautics and Astronautics Paper 2003-3978



Table 3 Comparison of discrete adjoint and complex variable design variable derivatives for coefficients of lift
and drag for fully turbulent flow over an Onera M6 wing.

Camber Thickness Twist Shear

CL
0.956208938269467 -0.384940321071468 -0.010625997076936 -0.005505627646872 discrete
0.956208938269046 -0.384940321071742 -0.010625997076937 -0.005505627647001 complex

CD
0.027595818243822 0.035539494383655 -0.000939653505699 -0.000389373578383 discrete
0.027595818243811 0.035539494383619 -0.000939653505699 -0.000389373578412 complex

from three to five-fold savings in terms of high-
fidelity simulations on aerodynamic optimization of
3D wings and multi-element airfoils, where simpli-
fied physics models (e.g., Euler) computed on coarse
grids serve as low-fidelity models, while more accu-
rate models (e.g., Navier-Stokes) computed on finer
grids serve as high-fidelity models. AMMO was
the first approach for using variable-fidelity models
analytically guaranteed to converge to high-fidelity
answers.

Because AMMO relies on using a variety of models
in a single optimization run, maintaining continuous
integration and consistency with the entire software
set is especially crucial for obtaining stable optimiza-
tion results. However, designing a testing strategy
for optimization presents an interesting challenge
since optimization algorithms requires reasonably
well converged analyses and is, therefore, expensive.
Procedures for automated testing of optimization
software is currently under development.

Output Error Correction and Grid Adaptation

One of the thrusts of the FAAST program is to
develop a mathematically rigorous methodology to
adapt a grid discretization to directly improve the
calculation of an output function. An adjoint-based
error correction and adaptation scheme has pro-
duced excellent results in 2D.19 This scheme is being
extended to 3D and incorporated into Hefss.21 This
error correction and adaptation scheme requires the
calculation of flow and adjoint residuals on embed-
ded grids with interpolated solutions. The modu-
larity of the Hefss reconstruction, flux, and adjoint
routines facilitated this calculation.

The interpolation of the solution onto the em-
bedded grid requires the calculation of least-squares
gradients. This gradient routine was readily shared
between the flow and adjoint codes. The element-
based interpolation scheme was developed test-first
with the F95unit framework. The code to compute
the flow and adjoint residuals consists of only a small
driver routine; the remainder of the code is reused
from the flow and adjoint solvers. The anisotropic
adaptation metric is calculated with code that was
also developed test-first using the F95unit frame-
work.

Concluding Remarks
While the FAAST team has learned a great deal

from the arena of commercial software development,
it is important to remember that Langley’s primary
goal is to advance the state of the art rather than
deliver commercial software products. However, it
has been the experience of the team that the syn-
thesis and extension of the Center’s computational
fluid dynamic capabilities has greatly enhanced the
ability to perform research. Development of a uni-
fied framework for computational simulation enables
researchers to examine a number of widely vary-
ing research disciplines and to apply new technology
in a more straightforward and encompassing fash-
ion. The capability laid out in this effort currently
supports a broad range of research projects and ap-
plications, including general unstructured-grid algo-
rithms, high-energy flows, mixed-element computa-
tions, error estimation, grid adaptation, design op-
timization, time-accurate schemes, turbulence mod-
eling, and multigrid algorithms.

As advances are made in each area, they immedi-
ately become part of the mainstream capability and
are readily available to other researchers and users.
Some team members have expressed concern about
using such a dynamic software tool for work on spe-
cific research projects. However, these concerns are
mitigated by developing and continuously invoking
a suite of automated test cases.

One truly remarkable aspect of this project is that
a gaggle of developers which typically shuddered at
any mention of the word “process” gelled into a team
of developers using a fairly rigorous, pervasive soft-
ware process that they enjoy.
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Appendix A

Coding Standard

Note: parenthetical numbers refer to line numbers in the
sample program which follows.

Style

� Free format with no character past column 80

� Indentation: begin in first column and recursively indent
all subsequent blocks by two spaces.

� Start all comments within body of code in first column
[42].

� Use all lowercase characters; however, mixed-case may
be used in comments and strings.

� Align continuation ampersands within code blocks [77].

� No tab characters

� Name ends [85].

Comments

� For cryptic variable names, state description using by a
comment line immediately preceding declaration or on
end of the declaration line [62].

� For subroutines, functions, and modules, insert a con-
tiguous comment block immediately preceding declara-
tion containing a brief overview followed by an optional
detailed description [42].

Variable Declarations

� Do not use Fortran intrinsic function names.

� Avoid multi-line variable declarations.

� Declare intent on all dummy arguments [63].

� Declare the kind for all reals, including literal constants,
using a kind definition module.

� Declare dimension attribute for all non-scalars [63].

� Line up attributes within variable declaration blocks.

� Any scalars used to define extent must be declared prior
to use [60].

� Declare a variable name only once in a scope, including
use module statements.

Module Headers

� Declare implicit none [35].

� Include a public character parameter containing the
CVS $Id$ tag [37].

� Include a private statement and explicitly declare pub-
lic attributes.

Subroutines and Functions

� The first executable line should be continue [69].

� Use the only attribute on all use statements [58].

� Keep use statements local, i.e., not in the module
header.

� Group all dummy argument declarations first, followed
by local variable declarations.

� All subroutines and functions must be contained within
a module.

� Any pointer passed to a subroutine or function must be
allocated by at least size 1 to avoid null or undefined
pointers.

Control Constructs

� Name control constructs (e.g., do, if, case) which span
a significant number of lines or form nested code blocks.

� No numbered do-loops.

� Name loops that contain cycle or exit statements.

� Use cycle or exit rather than goto.

� Use case statements with case defaults rather than if-
constructs wherever possible.

� Use F90-style relational symbols, e.g., >= rather than
.ge. [73].

Miscellaneous

� In the interest of efficient execution, consider avoiding:

– assumed-shape arrays

– derived types in low-level computationally inten-
sive numerics

– use modules for large segments of data

� Remove unused variables.

� Do not use common blocks or includes.
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Illustrative Example

1 ! Define kinds to use for reals in one place

2
3 module kind_defs

4
5 implicit none

6
7 character (len=*), parameter :: kind_defs_cvs_id = &

8 ’$Id: cs_example.f90,v 1.5 2002/08/13 02:37:59 kleb Exp $’

9
10 integer, parameter :: sp=selected_real_kind(P=6) ! single precision

11 integer, parameter :: dp=selected_real_kind(P=15) ! double precision

12
13 end module kind_defs

14
15 ! A token module for demonstration purposes

16
17 module some_other_module

18
19 implicit none

20
21 character (len=*), parameter :: some_other_module_cvs_id = &

22 ’$Id: cs_example.f90,v 1.5 2002/08/13 02:37:59 kleb Exp $’

23
24 integer, parameter :: some_variable = 1

25
26 end module some_other_module

27
28 ! A collection of transformations which includes

29 ! stretches, rotations, and shearing. This comment

30 ! block will be associated with the module declaration

31 ! immediately following.

32
33 module transformations

34
35 implicit none

36
37 character (len=*), parameter :: transformations_module_cvs_id = &

38 ’$Id: cs_example.f90,v 1.5 2002/08/13 02:37:59 kleb Exp $’

39
40 contains

41
42 ! Computes a stretching transformation.

43 !

44 ! This stretching is accomplished by moving

45 ! things around and going into a lot of other details

46 ! which would be described here and possibly even

47 ! another "paragraph" following this.

48 !

49 ! This contingous comment block will be associated with the

50 ! subroutine or function declaraion immediately following.

51 ! It is intended to contain an initial section which gives

52 ! a one or two sentence overview followed by one or more

53 ! "paragraphs" which give a more detailed description.

54
55 subroutine stretch ( points, x, y, z )

56
57 use kind_defs

58 use some_other_module, only: some_variable

59
60 integer, intent(in) :: points

61
62 ! component to be transformed

63 real(dp), dimension(points), intent(in) :: x, y

64 real(dp), dimension(points), intent(out) :: z ! transformation result

65
66 external positive

67 integer :: i

68
69 continue

70
71 i = 0

72
73 if ( x(1) > 0.0_dp ) then

74 call positive ( points, x, y, z )

75 else

76 do i = 1, points

77 z(i) = x(i)*x(i) + 1.5_dp * ( real(i) + x(i) )**i &

78 + ( y(i) * real(i) ) * ( x(i)**i + 2.0_dp ) &

79 + 2.5_dp * real(i) + 148.2_dp * some_variable

80 enddo

81 endif

82
83 end subroutine stretch

84
85 end module transformations

Appendix B

Fortran 95

The rationale for some elements of the coding
standard presented in the previous section are dis-
cussed in this section.

Best Practices

The use of implicit none minimizes the possi-
bility of variable type errors. An example of a type
error is when the implicit Fortran integer typing
scheme creates integers for variable names beginning
with the letters “i” through “n” when the user had
intended a real variable. This unintended declara-
tion type is avoided because implicit none requires
every variable to be declared explicitly.

The use of only∗ prevents unintended changes to
values of other variables in the inherited modules.
The only statement also facilitates finding the mod-
ule that provides the inherited variable. To further
restrict access to variables or subroutines in mod-
ules, a private statement is to be placed at the
top of the module. An exclusive and explicit list of
public entities is therefore required to share module
data and methods outside the module. This exclu-
sivity prevents unintended variable modifications.

Use of equality comparison with reals should be
avoided because small, round-off errors may be
present. The difference between the two variables
is compared to an intrinsic function like tiny() to
provide a more reliable comparison.

In general, the use of the select case conditional
construct is more efficient than using an if-elseif
construct since if-elseif might require several
condition evaluations, while the select case only
contains one condition evaluation. The select
case construct is analogous to the depreciated com-
puted goto.† Also select case constructs convey
control logic in clearer fashion and allow for cleaner
error handling through the default case.

Performance Considerations of Fortran 95

Throughout the Fortran 95 restructuring of the
Fun3D solver, several efficiency issues pertaining to
advanced coding constructs were uncovered. Fea-
tures such as derived types and modules are ex-
tremely attractive for communicating data; however,
it was found that current Fortran 95 compilers
often failed to produce performance comparable to
that of conventional Fortran 77 constructs such as
passing data through calling argument lists.

Data Sharing With Modules
An intermediate restructuring of Fun3D relied al-

most exclusively on the use of Fortran 95 modules.
By eliminating virtually every argument list in the
solver, an exceptionally clean code was obtained.
∗For example, use aModule, only : aVariable
†See

groups.google.com/groups?threadm=9o7uhi%24pus%241%40eising.k-
net.dk

for further discussion.
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Table B1 Compilers used in performance study.

Vendor Options Release O/S Platform

Absoft� -O3 -cpu:p6 8.0-1 Linux® 2.4.18 Intel® P3

Compaq® -arch ev67 -fast -O4 -tune ev67 X1.1.1-1684 Linux® 2.4.2 Alpha EV67

HP® -O3 2.4 HP-UX® B.10.20 HP® 9000

IBM® -O5 7 AIX® 3 IBM® 7044

Intel® -O3 -ipo -wK 7.1-008 Linux® 2.4.18 Intel® P3

Lahey-Fujitsu --o2 --nwarn -static --nsav --ntrace --nchk

-x -

6.20a Linux® 2.4.18 Intel® P3

NAG® -O4 -Wc,-malign-double -ieee=full

-unsharedf95

4.2 Linux® 2.4.18 Intel® P3

NA Software -fast 2.2-1 Linux® 2.4.18 Intel® P3

PGI® -fast 4.1-1 Linux® 2.4.18 Intel® P3

SGI® -O2 7.3.1.2m IRIX® 6.5 SGI® R10000

Sun� -fast 6.2-2 SunOS� 5.8 Sun� Blade1000

Table B2 Unformatted disk I/O using 20M integers and 20M reals.

Compiler Assumed size Module Derived type Assumed shape

Absoft� 1.00 1.00 1.03 1.04

Compaq® 1.00 0.98 6.47 0.99

IBM® 1.00 1.03 1.01 1.03

Intel® 1.00 1.16 1.14 1.05

Lahey/Fujitsu 1.00 6.05 5.99 1.04

NAG® 1.00 1.02 1.22 1.03

NA Software 1.00 0.99 1.08 1.01

PGI® 1.00 0.98 1.00 0.98

SGI® 1.00 31.91 31.37 34.80

Sun� 1.00 0.98 1.02 0.98

Table B3 Compute work using 20M integers and 20M reals.

Compiler Assumed size Module Derived type Assumed shape

Absoft� 1.00 1.16 1.84 1.20

Compaq® 1.00 1.40 1.47 1.38

IBM® 1.00 2.76 2.76 2.76

Intel® 1.00 0.97 0.98 0.95

Lahey/Fujitsu 1.00 1.07 1.07 1.02

NAG® Aborted

NA Software 1.00 0.95 1.13 0.92

PGI® 1.00 1.96 1.96 0.94

SGI® 1.00 1.10 1.10 1.07

Sun� 1.00 1.42 1.40 1.07

However, in subsequent testing, this implementation
was shown to be several times slower in execution
speed than the legacy C/Fortran 77 solver. Upon
closer inspection, it was found that the use of mod-
ules to communicate large segments of data can be
extremely inefficient. To illustrate this degradation
in performance, the test code included in Refer-
ence43 has been executed on a range of platforms
and compilers as listed in Table B1. Here, data
is communicated with a file I/O routine, as well
as a routine that performs a large amount of ar-

bitrary floating-point manipulations. In addition to
an array A passed through a traditional argument
list interface, an identical array B is also passed to
and from the subroutines through the use of a For-

tran 95 module. For this test, the extent of the
arrays is 20 M, a value on the order of that en-
countered in typical aerodynamic simulations. The
results are normalized on the data obtained using
the argument list model. As can be seen in Ta-
ble B2, use of the module construct can incur severe
penalties for unformatted disk I/O. The module in-

18 of 20

American Institute of Aeronautics and Astronautics Paper 2003-3978



terface is over thirty times slower than the data
transferred via a conventional argument list on an
SGI®. For floating-point arithmetic, the module in-
terface exhibits run times on the order of 20 percent
higher than the computations using data brought
in through an argument list, as shown in Table B3
on the facing page. Due to this performance degra-
dation, the module construct is employed sparingly
in the Hefss solver as a means to share large data
structures. Only small amounts of data such as
free-stream quantities, algorithmic parameters, and
turbulence modeling constants are shared through
modules.

Derived Types

The baseline C/Fortran 77 solver was also refac-
tored to make extensive use of the Fortran 95
derived type construct. The derived type is very
attractive in the sense that a number of related
quantities can be encapsulated in a single variable,
yielding relatively short argument lists throughout
the code. Using this paradigm, variables related to
the computational grid are stored in a grid type;
solution-related variables are located in a soln type,
and so forth. When a low-level routine requires a
fundamental piece of data such as the coordinates of
a grid point i, the information can be extracted as
grid%x(i), grid%y(i), and grid%z(i). Arrays of
derived types are also supported under Fortran 95,
making the implementation of algorithms such as
multigrid and multiple instances of quantities, such
as boundary groups, straightforward.

As in the case of modules, it was found that the
use of derived types can also incur severe execution
penalties. As shown in the last column of Tables B2
and B3 on the preceding page, a similar test to the
one described previously has been performed on an
array C transferred as the component of a derived
type variable. It can be seen in Tables B2 and B3
on the facing page that this coding idiom can yield
execution times more than thirty times slower for
unformatted disk I/O and nearly a factor of three
slower for floating-point operations over the argu-
ment list model.

The current Hefss solver uses derived types to
encapsulate much of its data structures; however,
the components of these types required by low-level
routines are extracted at the calling level and are re-
ceived as conventional scalars and arrays in the I/O-
and compute-intensive portions of the code. This
model allows simple argument lists at the higher lev-
els of the code, while maintaining the performance of
the baseline solver. From a developer’s point of view,
derived types are one of the more useful enhance-

ments of Fortran 95 over Fortran 77. They
allow the developer to string together variables in
meaningful groups and treat them as a single entity
when desired. The Hefss code uses a number of
derived types. For example, the grid derived type
contains all the information needed for the specifi-
cation of the discretized mesh—x,y,z values for each
point in space, cell volumes, cell-face normals and ar-
eas, connectivity information, and so on. Any of this
information is available with the simple construct
grid%variable, e.g., grid%x. Derived types may
also be concatenated, extending their usefulness.
For example, the grid derived type in the Hefss code
encompasses a boundary condition derived type that
contains all the necessary data to impose boundary
conditions—the physical condition (e.g., solid wall),
the locations of points on the boundary, surface nor-
mals, and so forth. In addition, the definition of the
derived type may be extended at a future date with-
out affecting existing code. For example, adding a
cell-face velocity for moving grid applications would
involve a one-line addition to the type definition and
would be completely transparent to sections of code
not requiring this information.

Assumed-Shape Arrays

As shown in Tables B2 and B3 on the preced-
ing page, some compilers treat arguments passed via
assumed-shape arrays as poorly as they did derived
types. Assumed-shape arrays can be noncontiguous,
and thus interfacing to old Fortran 77 routines
may require data to be copied to form a contigu-
ous data block. These data copies can cause a large
increase in the total memory required to compute
a flow solution for some compilers as compared to
others.

Memory Copies

Occasionally it is desirable to bring variables into
a routine via argument lists rather than modules,
as demonstrated in Tables B2 and B3 on the facing
page. However, unexpected behavior was detected
on certain platform/compiler combinations when ar-
gument lists were combined with low-level module
use. In these instances, the variables in the modules
were not synchronized with the argument list vari-
ables. This synchronization issue was resolved when
argument lists were used consistently throughout the
subroutines that needed access to the data. It was
eventually surmised that this problem was due to
memory copies made by some compilers during a
subroutine call. When that data copy was modified,
it was no longer synchronized with the original data
stored in the module and accessed with use. Also,
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on return from the subroutine, the local copy of the
data was used to overwrite the data stored in the
module, possibly erasing any modifications of the
original data while the copy existed. This behavior
appears to be very compiler and application specific
and very difficult to detect and instrument.

Compilation Errors, Warnings, and Information
The various compilers listed in Table B3 on

page 18 generally have different sets of constructs
that deem errors or produce a warning or other in-
formation. Some of the compilers are generally more
lenient or particular than others when it comes to
the constructs that are accepted as valid code for
compilation. The Fortran 95 code base has ben-
efited from exposure to a large number of different
compilers. The coding standard contains guidelines
for promoting portability. This portability experi-
ence was gained by exposure to multiple compilers,
which makes it important to build and test on many
different architectures/compilers, and which also re-
sults in a code base that is very portable.

Compiler Maturity
In addition to the problems discussed with per-

formance, errors have been found in a number of
compilers. Some versions of the compilers have con-
tained errors that have prevented them from suc-
cessfully compiling Hefss. Also, compiled code will
sometimes suffer run-time errors that are specific to
the compiler or its version. Some compiler vendors
have been very quick to respond to compiler bug
reports, and others have ignored our requests for res-
olution of these errors.

20 of 20

American Institute of Aeronautics and Astronautics Paper 2003-3978


	Introduction
	Baseline Code Selection
	Programming Language
	Porting and RestructuringLegacy Code
	Modularity and Encapsulation
	Memory allocation
	Parallel Communication
	Boundary Conditions
	Gas Physics

	Collaborative Software Development
	Extreme Programming
	Sustainable Pace Productivity does not increase with hours worked; tired programmers are less productive than well-rested ones.
	Metaphor Guide all development with a simple shared story of how the whole system works.
	Coding Standards Programmers write all code in accordance with rules emphasizing communication through the code.
	Collective Ownership Anyone can change any code anywhere in the system at any time.
	Continuous Integration Integrate and build the system many times a day, every time a task is completed.
	Small Releases Put a simple system into production quickly, then release new versions on a very short cycle.
	Test-Driven Development Any program feature without an automated test simply doesn't exist.
	Refactoring Programmers restructure the system without changing its behavior to remove duplication, improve communication, simplify, or add flexibility.
	Simple Design The system should be designed as simply as possible at any given moment; extra complexity is removed as soon as it is discovered.
	Pair Programming All production code is written with two programmers at one machine.
	On-Site Customer Include a real, live user on the team, available full-time to answer questions.
	The Planning Game Quickly determine the scope of the next release by combining business priorities and technical estimates; as reality overtakes the plan, update the plan.

	Project Retrospectives
	Scrum Status Meetings
	Other Communication Mechanisms
	Documentation

	Research Products
	Time-Accurate Simulations
	Incorporating Multiple Element Types
	Two-Dimensional Capability
	Multigrid Algorithms
	Incorporating High-Energy Physics
	Adjoint Solver and Sensitivity Analysis
	Design Optimization
	Output Error Correction and Grid Adaptation

	Concluding Remarks
	Acknowledgments
	Colophon
	Style
	Comments
	Variable Declarations
	Module Headers
	Subroutines and Functions
	Control Constructs
	Miscellaneous
	Illustrative Example
	Best Practices
	Performance Considerations of Fortran 95
	Data Sharing With Modules
	Derived Types
	Assumed-Shape Arrays
	Memory Copies
	Compilation Errors, Warnings, and Information
	Compiler Maturity



